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Household Demand System Analysis:
Implications of Unit Root Econometrics for
Modeling, Testing and Policy Analysis

Working with time-dependent information (series that contain unit roots) has strong implications for
consumer analysis. A change in consumer policy that is intended to have a transitory impact on household
decisions may have a permanent impact, and estimated parameters of decision making models may not

follow standard distributions.

Jonathan J. Fox, The Ohio State University'

Introduction

Time series data has been heavily relied upon
for inference throughout the history of consumer analysis
(Stone, 1954; Barten, 1977; Deaton and Muellbauer
1980). However, time series such as household
expenditures and prices, have not been shown to be time
homogeneous. If the distribution of variables such as
expenditures on food and clothing are time-dependent
(contain unit roots), then their mean and/or variances are
functions of time. Time dependency, or nonstationarity,
has remarkable implications for both consumer policy
and statistical analysis. Firstly, in the presence of unit
roots, any transitory policy change may have a permanent
effect on the variable of interest. Secondly, in the
presence of unit roots in the data, estimated parameters of
demand systems would not follow the usual standard
(textbook) distributions; hence, previous empirical
findings would be suspect.

This paper provides an expository discussion of
the research methodology used in Fox (1994). The
analytical approach described in this paper contrasts with
those from previous empirical studies by focusing on the
time series properties of the data. It is argued that
analytical techniques, which focus on these time series
properties, provide the best link between consumer
theory and short-run information (data) on consumer
activity. For the most part, previous studies of consumer
demand have ignored the time series properties of the
data, therefore, these models of demand can be improved.
Unit root testing, which leads to tests for cointegration
(long-run equilibrium), has been shown to be an efficient
way to make use of the full amount of information in each
time series (Mokhtari, 1992; Banerjee, Dolado, Galbraith
and Hendry, 1993).
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Time Series Reflecting Consumer Behavior

Current and constant (1982) dollar personal
consumption expenditures, ranging from 1946 to 1990,
for eleven expenditure categories were obtained from the
U.S. Department of Commerce, Bureau of Economic
Analysis entry in The Economic Report of the President
(1991). From these series, the price series used by the
U.S. Department of Commerce are easily obtained by
dividing current expenditures by constant expenditures
for each year for each category. The price series, used in
conjunction with current expenditure series and a total
expenditure series, provide the essential variables for a
theoretically plausible model of consumer demand.

Gtttz Anlvs

A great deal can be learned about consumer
behavior by looking at the time paths for both the levels
and the first differences of key consumption variables. In
most cases, the graphs of the levels for budget shares and
prices show a distinct trend, along with cyclical variation.
The ups and downs of gas and motor vehicle prices are
obvious to both the individual consumer and the
economist tracking these series. What is not so obvious
to the individual, but blatantly obvious to researchers who
graph their data, are the stochastic trends imbedded in
most of the series used in the analysis of demand.

The time paths for food provide a typical
example of a downward trending series (see Figures 1
and 2). The graph of the one period change in food
expenditures shows that this downward trend is not
simply a constant or a deterministic trend. The jagged
paths traveled by the one period changes series indicate
that the downward trend follows a variable or stochastic
process. For example, Figure 2 shows the rate of decline
in the portion of the budget spent on food tends to hover
around a half of a percent, but, the actual rate of decline



is rarely -.005, as would be implied by a deterministic
trend. In fact, for every series, the changes in the variable
appear to exhibit a degree of bounded variability. Thus,
upon a simple graphical representation of the data, it
becomes clear that this stochastic movement of the
changes in each series needs to be included in the model
of consumer demand.

All of the price variables, measured on a
logarithmic scale, exhibit an upward trend over the
period of analysis. Again, evidence from the time paths
of the changes in prices shows that the upward trend is
not a constant. There appears to be a stochastic element
in the upward trend. The time paths of the one period
changes in the natural log of prices, which is the growth
rate in prices, are generally very different. For example,
the growth rate of the price of clothing moves about
erratically in the early 1950s, tends to increase over the
1960s and 1970s, and stabilizes in the 1980s while the
growth rate of the price of food tends to be more erratic
in the 1970s and early 1980s.

Many of the interesting features of the time
paths of the variables commonly used to describe the
consumer decision making process coincide with a
specific event or period in history. The fact that the
impact of historical events can be seen in the data may be
the single most appealing aspect of using time series data
to analyze consumption. For example, the beginning of

Figure 1

0.24

0.16

1948 1955 1962 1969 1976 1983 1990

Figure 2

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02
1948 1955 1962 1969 1976 1983 1990

Medicare in 1966 precedes a period of erratic medical
expenditures while the 1973 Arab oil embargo appears
to have significantly influenced several of the series. It is
well worth stressing that the clear trends or apparent
nonstationarity of the levels of most of these variables
carries the impact of these and many other historical
events (shocks) as a permanent component of their time
series behavior. Furthermore, it is also the case that this
historical information is all but lost when only the first
differences of the series are used in analysis.

Formal Tests for Unit Roots

Simply looking at the time paths of each series
is an excellent first indication of the time dependency, or
nonstationarity, of a process. However, a formal test of
nonstationarity is desirable. In practice, there are several
formal tests for unit roots (nonstationarity). Among the
most popular of these tests are the Cointegration
Regression Durbin-Watson test of Sargan and Bhargava
(1983), the Dickey-Fuller (DF) test, and the augmented
Dickey-Fuller (ADF) test. The ADF is the most widely
used test for a unit root, due to its simplicity and
efficiency.

To understand the Dickey-Fuller approach to
testing for unit roots it is helpful to consider the
autoregressive model,

X =BX,, +¢€, (1)

where t=1,2,..T. Equation (1) describes a process that
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began long ago, where { is a constant and €, is a normally
distributed, random variable with a mean of zero and a
variance of o®. The series X, is stationary if | B|<l. If
| B|=1, then the series is not stationary, and in the case
where |B|>1, the process X, is said to be explosive.
Most economic series have been found not to
demonstrate an "explosive" tendency (Nelson and
Plosser, 1982), and, thus, it is common practice to test the
null of B=1 against the one-tailed alternative of |B|<1.
In practice, the null of B=1 is often incorporated through
the first difference of a series,

X -X.=¢€, (2
which is merely a rearrangement of equation (1).
Otherwise, X,, can be reduced from both sides of
equation (1) to obtain

X -X,=BX,-X. +€; 3)
thus,
AX =(B-DX, +¢ 4)
or
AX, =X, +¢€, (5)

where, & = (B-1). Ordinary least squares estimates of ¢
can be used to test the null of nonstationarity for X,, B=1,
or a unit root. The ratio of ¢ to its standard error yields
the essential test statistic of the Dickey-Fuller test. If $=0
in equation (5), then equations (5) and (2) are the same,
and the null of nonstationarity, or of a unit root, is not
rejected. However, testing for the null of ¢=0 poses a
unique problem. The distribution of the test statistic does
not follow a standard distribution when integrated
process are included in the regression (Granger &
Newbold, 1974; Phillips, 1986; Davidson & MacKinnon,
1993). Dickey and Fuller (1979) show that the OLS
estimates for B are distributed around a value which is in
fact less than unity ($p<0). The t-ratio for ¢ does not have
a limiting normal distribution. The distribution is so
negatively skewed that most of its mass falls below zero.
Therefore, the critical values in the left-hand tail are less
than those that would be observed in the conventional
Student-t distribution. Thus, the usual t-tests are not
appropriate for testing the null hypothesis of a unit root
(B=1 or $=0). Dickey and Fuller, along with others have
used Monte Carlo simulations to calculate tables of
critical values based on the distributions of the statistics
gained from such tests for nonstationarity. These
resulting tables of critical values are, in absolute value,
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higher than normal critical values.

The augmented Dickey-Fuller test is a
generalization of the simple Dickey-Fuller test. The
general representation of the ADF regression is

AX=o +o,t+0X, +DBAX €, ©)
where t is a time trend. Equation (6) should include as
many lagged values of the dependent variable (AX,;) as
are necessary to ensure that €, is white-noise. A Lagrange
Multiplier test can be used to test the residuals in
equation (6) for serial correlation to ensure that enough
lagged values of the dependent variable have been
included. Accounting for serial correlation provides a
major improvement over what would be an invalid DF-
test in the presence of serial correlation. The value of the
ratio of ¢ over its standard error in equation (6) is, again,
the essential element in the test of the null of
nonstationarity, ¢=0. Since the serial correlation in the
error terms has been fully accounted for by the inclusion
of lagged values of the dependent variable in equation
(6), the same asymptotic critical values calculated for
DF-tests can be used to test the null of nonstationarity
(Davidson and MacKinnon, 1993, p. 711). For negative
values of &, if the calculated value of the of ratio ¢ to its
standard error is larger (in absolute value) than the
critical value from the table, which are generally greater
than 3, then we reject the null of a unit root
(nonstationarity).

Implications of Nonstationarity

To highlight the implications of a unit root in a
series, it is helpful to consider the case where the series
X, has been found to be integrated of order one. Thus, X,
can be written as

X =X,+€ or AX =¢€. @))

Similarly, any autoregressive process that has a

coefficient p equal to one in the equation

Xi=pX, +€ (8)

is described as having a unit root. Assuming €, is

generated by a white noise process with variance o?, then

(8) is also known as a simple random walk or Martingale

process. Repeated substitution of X, = pX,, + €.,, X,
= pX,; + €., ... into equation (8) yields

X = E}-lel-j‘ &)



If €, is considered to be the result of a shock (e.g. a policy
change) to this process, then it is clear that this
disturbance will have a permanent impact on the series.
This is the reason that the term "integrated” is used to
describe X,, which amounts to an accumulation of
persistent shocks when a unit root exists.

On the other hand, if X, was generated by a
stationary process, ie., |p|<l in equation (8), then
similar repeated substitutions produce

X, = Z}-,_Opjﬁl_j, (10)
which clearly shows that the effect of the shocks to the
system decrease over time. The significance of this
"persistent versus diminishing" effect of shocks to a
system cannot be overemphasized. If policy
recommendations are to be made on the basis of such
series, then it is of vital importance to find out whether
the variable of interest is a stationary or a nonstationary
process. If a nonstationary process is subjected to a
shock, then the impact of this shock will be permanent.
The repercussions of the policy change will remain in the
system, at the strength of the initial impact, forever,
Thus, the problems facing the consumer policy analyst
are further complicated by permanent changes in the
underlying process that she is trying to describe or
influence. Therefore, a significant degree of emphasis
must be placed on tests for unit roots (nonstationarity) in
any policy analysis that uses economic time series.

For Statistical Analysi

The statistical implications of analyzing
variables that contain unit roots are as profound and
significant as those for policy. Although the mean of a
nonstationary process, X,, may be zero, E(X)=0, its
variance is not constant over time. Using the same
repeated substitution used to describe a nonstationary
process as an accumulation of persistent errors, the
variance of a nonstationary process can be expressed as

Var(X)=Var(e)+Var(e, )+...+

Var(e, ) = 0T, (11)
where it is shown to be growing over time. The variance
is no longer a function of time when |p|<1:

Var(x)=p°Var(e)+p'Var(e, )+
~+0"Var(e )
=0 (l+p+p’+..+p")
= o?/1-p” (12)
The implications for statistical inference are profound, as
most aspects of statistical inference rely upon the
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variance of a process. Once the variance of a process is
determined to be a function of time, it can no longer be
used reliably in statistical inference.

With respect to modeling with integrated
processes, Granger and Newbold (1974) show that test
statistics frequently confirm a relationship between
integrated variables, even when the processes considered
could not possibly be related. Granger and Newbold
examine time series which are known to be generated by
random walks. They find that when they estimate these
spurious regressions between integrated processes, the
value of R? turns out to be high, and the value of the
Durbin-Watson statistic tends to be low, regardless of the
existence of any true relationship between the variables.
Furthermore, the t-statistics for the estimated regression
coefficients imply a rejection of the null of no relationship
far more often than is expected.

Phillips (1986), expounding upon Granger and
Newbold, considers the basic regression model

Y=o+ BX +u, (13)
where u,~(0,02) and Y, and X, follow a random walk.
Therefore,

Y=Y, +¢ (14)

and

X=X, ,+v,. (15)
Phillips shows that as the number of observations
approaches infinity, the t-statistics for B and the value of
R? in equation (13) approach random variables, while the
Durbin-Watson statistic approaches zero. Davidson and
MacKinnon (1993) carry out Monte Carlo simulations to
illustrate the increasing number of rejections of the null
of B=0 in equation (13) as the sample size increases.
With a sample size of 25, the null is rejected 53% of the
time. With a sample of 2000, the null of B=0 in equation
(13) is rejected 94.7% of the time. Furthermore, if a drift
or a trend is added to the model, the null is rejected 100%
of the time after attaining samples of 500 and 100
respectively (Davidson and MacKinnon, 1993, p.672).
Davidson and MacKinnon further point out that
rejecting the null of =0 does not imply that B+0 in (13);
it only implies that the null is false. If Y, is a random
walk process, it certainly cannot equal, as (13) implies if
=0, a constant plus a stationary error term; therefore,
the null is false to begin with, and the test is invalid from
the start. The only way that the equality expressed in (13)
can be satisfied when B=0 is if u, follows a random walk.
Furthermore, if u, is a random walk (which it is assumed



not to be), then the t-value becomes a function of this
integrated process. For that matter, any and all statistics
that are functions of these disturbances become functions
of random walks (or more precisely, functions of Wiener
processes). Obviously, reliable inference cannot be
based on statistics that are functions of integrated
processes, as these processes are known to have a
variance which is growing over time. Given that the
model in equation (13) is misspecified, Davidson and
MacKinnon estimate

Y, =a,+ BX +a, Y, +u, (16)
where (14) and (15) still apply. They find that the null of
B=0 is rejected about 15% of the time, regardless of
sample size (Davidson and MacKinnon, 1993, p.672).
This result is drastically different from that obtained when
the lagged value of the dependent variable is not included
in the regression. However, 15% is still three times
greater than the usual and acceptable 5% rate of
committing a type-one error. This discrepancy further
demonstrates the way in which t-statistics from
regressions including integrated processes follow non-
standard distributions asymptotically. It is clear that a
researcher must obtain distributions of the estimates
through alternative means (e.g. Monte Carlo
experiments), in order to conduct reliable inference when
integrated processes are involved.

For Modeling

Ultimately, the statistical problems associated
with using nonstationary series can be circumvented
through the use of a dynamic modeling strategy which
relies on tests for cointegration and the estimation of error
correction models (ECM). The ECM framework uses
only stationary series or linear combinations of series
which are stationary; moreover, the ECM model is
dynamic in nature and uses both the long-run and the
short-run information embedded in trended variables,
such as expenditures and prices.

To illustrate the concept of cointegration, which
is the cornerstone of the ECM framework, it is helpful to
consider a simple equilibrium relationship which can be
defined as

Y, = BX. 17
If Y, follows an equilibrium path with X, then
Y, - BX,=0. (18)

However, it is not expected that equation (18) will be
satisfied at all times, even if Y, and X, are closely related
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in the long-run. In fact, most of the time, this equality
will not be satisfied. This is the case with most economic
processes. For example, people rarely spend exactly
what they earn; in fact, people rarely spend what they
expect or desire to spend. Thus, to illustrate the frequent
periods of disequilibrium which clearly take place, it is
helpful to write equation (18) as

Yl- th=en (19)

where €, is the disequilibrium error. Nonetheless,
equation (19) shows that the parameters [1,-B] work to
maintain a constant and unique relationship between Y,
and X,. Engle and Granger (1987) maintain that if an
equilibrium relationship exists, then the values of €, or
the disequilibrium error, should not be large; in fact, the
disequilibrium error should demonstrate a strong
tendency to become very small as time passes. Thus, the
variables must not drift too far apart when scaled. In this
case, the scaled transformations placed on Y, and X, are
1 and -B, respectively. This transformation is called the
scaled cointegrating vector [1,-B]. Accepting that
equilibrium relationships are essentially two or more
series which are cointegrated, Granger (1983) advocates
the use of an error correction mechanism to illustrate the
short-run adjustment process toward equilibrium. Thus,
Granger argues that an error correction mechanism
should be used when modeling in the presence of
cointegration, an argument that has become known as the
Granger Representation Theorem.

The first requirement in testing for cointegration
is that the series in question, must share some level of
integration. For example, a series that is drastically
trending downward cannot be meaningfully explained by
a series that hovers around a constant. Therefore, in the
simple regression model

Y, =BX +€ (20
where €, ~ IIN(0,0),there will only be a parameter B that
satisfies equation (20) if Y, and X, are integrated of the
same order (i.e. requiring to be differenced the same
number of times to be made stationary).

The second requirement for cointegration
between two series implies that (Y,-BX,) is integrated to
a lower order than Y, and X,. This can be tested by
testing for the nonstationarity of €, or changes in €, in
equation (20). Even though Y, and X, may exhibit trends,
cyclical or seasonal variation, these changes may be
closely matched between the series so that, when scaled
by [1,-B], the difference between the variables shows no
such trend or cycle.



If'Y, and X, are integrated of order one, and (Y,
BX,) is stationary, then the error correction representation
is the proper statistical representation for the relationship,
and it contains information on the long-run equilibrium
path as well as the short-run adjustment process. A
simple error correction representation is

AY=0+B AXAAY-BX), +u, (21)
where the significance of A, known as the loading factor,
can be used in a further test of cointegration between Y,
and X,. The loading factor, A, may capture the speed of
adjustment with which consumers are reacting to
disequilibrium error. If A is not significantly different
than zero, then equation (21) will contain only short-run
information. It is worth noting that equation (21) is easily
derived from the simple autoregressive distributed lag
model,

Y=0+aY, +BX+B, X, +u, (22)
where | |<1, A=e-1, and B=(By+B)/(1-e) which is the
long-run response. If, upon estimation, it is found that the
value of ¢ is close to one, and that, therefore, the value of
A is close to zero, then it would be appropriate to
estimate the model in first differences only. However, if
e is found to be less than one, then a model made up only
of first differences will be inadequate with respect to both
estimation and forecasting (Harvey, 1990, p.291). In this
regard, the term in levels in (21), the error correction
term, becomes critical in the description of how the
relationship returns to its steady-state or equilibrium. For
example, if, at some point, Y, is subjected to some shock
or set of positive disturbances, which cause the series to
grow more rapidly than is expected, then the error
correction term, (Y-BX),_,, becomes positive, If A is
negative, then the net effect is a decrease in the growth of
Y,. Therefore, Y, is being forced back to its long-run
path (Harvey, 1990, p.292).

It is important to emphasize that equations (20)
and (21) yield two distinct types of information. Equation
(20) gives estimates for the parameters of the long-run
equilibrium relationship that is theorized to exist. On the
other hand, the estimation of equation (21) yields
information on the size and direction of the dynamic
adjustment process, through the estimation of 8, and A.
However, because (20) is imbedded in (21), the
estimation of (21) will provide information on both the
long-run and the short-run behavior of the variables.
This is perhaps the single greatest advantage to using the
cointegration framework for modeling consumer
behavior. The theory of consumer behavior lacks a time
dimension, while the data used in testing this theory is
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generated over, and is frequently a function of, time,
Conclusion

This paper suggests that the use of unit root
econometric techniques may be the best solution to the
paradox of using short-run, or dynamic, information to
analyze theories that describe long-run, or steady state,
relationships. Unit root econometric techniques entail a
less conventional modeling approach which involves a
search for equilibrium relationships that may exist
between certain groups of variables, even though short-
run observations on these variables may be time
heterogeneous.

It has also been shown that in the presence of
unit roots, any transitory policy change may have a
permanent effect on the variable of interest. In the case
of the consumer, this may imply that information is not
forgotten once embedded in the decision making process.
Thus, policy makers and consumer educators may need to
be even more cautious when implementing programs.
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